LESSON 4
BUILDING CONSTRUCTION
SESSION 2

Objectives
- The Student Shall:
 - List 5 fire spread concerns associated with Heavy Timber Construction
 - Identify 2 structural concerns related to Heavy Timber Construction

Objectives
- The Student Shall:
 - Identify 5 types of wood frame construction
 - List 8 fire spread concerns associated with all wood frame structures
 - Identify the inherent structural concerns in each of the 5 types of wood frame construction
Building Construction

Objectives

- The Student Shall:
 - Identify and explain the strategic considerations related to fires involving truss construction
 - Give an example of hybrid construction and the potential impact on fire department operations

Building Construction

Objectives

- The Student Shall:
 - Define both vertical and horizontal collapse zones
 - List 3 types of wood frame wall collapse
 - Identify 3 types of masonry wall collapse
 - Identify 4 types of wood floor collapse

Building Construction

Heavy Timber Construction

- NFPA Class IV -- Mill Construction
 - Exterior walls = brick / masonry
 - Interior structural members made of substantial wood
 - Columns at least 8” x 8”
 - Joists at least 6” x 10”
 - 3” side-laid planking floors covered by 1” top plank
 - Combustible roof (Heavy Timber Truss)
Heavy Timber Construction

- Major advantage
 - Structural integrity of members
 - Small surface to mass ratio
 - Harder to ignite
 - More resistant to collapse
- No concealed spaces
 - Stream penetration ability

Includes:
- Textile mills
- Factories
- Churches

Heavy Timber: Fire Spread Concerns

- Structural Fire Load
 - Massive amount of wood
 - Retain integrity
 - Small surface to mass ratio
 - May be soaked by years of process-related materials
 - Oils / Greases / easily ignited fluids
 - Dust
 - Increase ignitability
Building Construction

Heavy Timber: Fire Spread Concerns

- **Radiant Heat**
 - Exposure problem
 - Has ignited buildings up to 1000’ away
 - Flying brand problems
 - Beyond capability of most FD’s
- Defensive strategy
 - Establish collapse zones
 - Consider secondary collapse threat
 - Protect exposures

- **Hazardous Processes**
 - Plastics
 - Flammable Liquids & Gases
 - Hot fire production
 - Higher BTU production
 - Heavy floor loads
 - Heavy Roof Loads
 - Earlier collapse

- **Renovations**
 - Condos / Museums / Retail
 - Lightweight construction
 - Drop Ceilings
 - Voids created where concealed spaces did not exist
 - Added weight to structure
 - May overtax old sprinkler system
 - Multi-tenant occupancy
 - Change in fire hazard profile
Heavy Timber: Fire Spread Concerns

- Inadequate Sprinkler System
 - Lack of maintenance
 - Insufficient for hazard
 - Occupancy changes without fire protection upgrade
 - Current fire load greater than that for which system was originally designed

Heavy Timber: Structural Concerns

- Collapse rare in early stages
- Later stage collapse
 - Floor collapse followed by wall collapse
- Exception:
 - Buildings which have had repeated fires
 - Years of rot and neglect
 - Renovation-created structural compromise
 - Fire wall presence may limit damage

Heavy Timber: Structural Concerns

- Steel Spread Plates
 - Tie opposite walls together
 - May be tied into timbers
- Indicators:
 - Decorative stars
 - Circles / squares / diamonds
Heavy Timber: Structural Concerns

- Steel Spreader Plates
 - Unprotected steel rod
 - Symmetrical pattern plates
 - Built into original design of structure
 - Arbitrary pattern plates
 - Placed to support weakened wall
 - Exercise extreme caution
 - May cause change in strategy

Both will be adversely affected by the heat of a fire.

Wood Frame Construction

- NFPA Class V
- All structural elements are wood
 - Entire building combustible
 - Rarely higher than 3 or 4 stories
 - Include
 - Private dwellings
 - Churches
 - Tenements
 - Row houses
 - Mixed-Use Occupancies

Wood Frame Construction

- 5 Types:
 - Braced frame
 - Balloon Frame
 - Platform Frame
 - Truss Construction
 - Wooden I Beam Construction
Wood Frame: Fire Spread Concerns

- **ALL wood frames:**
 - Unenclosed Stairways
 - Path of least resistance for fire and smoke travel to upper floors
 - Trap occupants and FF’s on upper floors
 - Hose placement priority
 - Reason for Vent, enter, search (VES) operations
 - Multiple avenues of approach

Wood Frame: Fire Spread Concerns

- **ALL wood frames:**
 - Combustible Exterior
 - Autoexposure
 - Closely-spaced buildings
 - Radiant Heat
 - Combustible siding
 - Asphalt (Gasoline) siding
 - Must be kept wet

Wood Frame: Fire Spread Concerns

- **ALL wood frames:**
 - Combustible Roof
 - Flying brands
 - May require Brand Control Group on leeward side of fire
 - Dangerous working platform
 - Platform
 - Aerial Ladder
 - Roof Ladder
Wood Frame: Fire Spread Concerns

- ALL contiguous wood frames:
 - Attached cockloft potential
 - Attached cellars potential
 - Must be investigated early
 - Combustible shafts
 - Totally enclosed
 - Partially enclosed

Wood Frame: Structural Concerns

- ALL wood frames:
 - Structural additions create eccentric load and increase chance for wall collapse
 - Eccentric loads create bending tendency on supporting member
 - Fire escapes
 - Lack of maintenance
 - Destruction of supporting wall
 - Overload

- Veneer wall coverings
 - Misleading size-up (Check sides & rear)
 - Create eccentric load
 - Single thickness of masonry
 - Decorative brick, stucco, or stone
Wood Frame: Structural Concerns

- **ALL wood frames:**
 - Veneer wall coverings
 - Dependent on wall for stability
 - Attached by unprotected metal "ties"
 - Fire spread in space between veneer and supporting wall destroy ties
 - Collapse hazard

Braced Frame

- **Usually at least 100 years old**
- **Walls are Non-bearing**
 - Structural weight on vertical posts and horizontal girts
 - Wood beams 4" x 4" or 6" x 6"
 - Mortise and tenon connection
 - Proper joint connection is critical to stability

Braced Frame: Fire Spread Concerns

- **Old, dried out wood**
 - Reduced ignition temperature
- **Fire attack on mortise and tenon joints create structural instability**
- **Buildings usually closely-spaced**
Building Construction

Braced Frame: Structural Concerns

- Failure point is usually mortise and tenon joint
 - Point of connection
 - Least amount of wood
- Wood dimension of lower floors same as upper floors
 - No compensation for added weight above
 - Greatest structural weight on ground floor

- Fail without warning
 - Inward-outward collapse
- Heavy fire on lower floor will cause overloaded structural supports to crack and fail at 1st floor/2nd floor connection
 - Lower floor falls outward
 - Upper floor(s) fall inward
 - May lean-over if unattached

Balloon Frame

- All studs continuous for full height of building
- No inherent fire stopping between floors
- Stacked windows are reason for suspicion
Balloon Frame: Fire Spread Concerns

- Rapid fire extension from floor to floor via open exterior wall studs
 - Expect basement fire to spread to attic
 - Open floor joist channels promote horizontal spread under floor
 - Personnel-intensive
 - Smoky due to lack of oxygen in voids
 - Extensive and creative pre-control overhaul
 - Place lines in anticipation of fire spread

Balloon Frame: Structural Concerns

- Smaller vertical members (2” x 4”) holding up larger horizontal members (floors / roof) [3’ x 10”]
 - Non-bearing walls often fail in 90° collapse
 - Floors may be left intact and intensify radiant heat problem
 - Bearing wall failure usually causes complete failure
 - Roof and/or floor failure may cause wall failure and vice-versa

Platform Frame:

- All studs are one story in height
- Floors provide some inherent fire stopping
 - Designed to confine fire to one floor
- Usually limited to 3 floors
 - Each floor is a separate platform built on top of the one below
Platform Frame: Fire Spread Concerns

- Utility pokethroughs negate the integrity of the platform design
 - Plumbing
 - Electrical
 - HVAC ductwork
 - Soffits

Platform Frame: Structural Concerns

- Fail in similar ways to balloon frame
 - Bearing wall destruction
 - Walls with windows fail more readily
 - Floors will fail from the height of the bearing wall failure
 - Floors may burn through and cause localized collapse

TRUSS CONSTRUCTION

- As strong as its weakest link
- Failure of any part of the truss is likely to collapse entire truss
- Once truss is involved in fire:
 - Withdrawal and roll call
 - Establish collapse zones
 - Switch to defensive strategy

 EARLY ID = KEY TO SAFETY
TRUSS CONSTRUCTION

Assess fire conditions
 - Pre-flashover: Contents fire
 - Usually no structural compromise
 - Marginal interior operation
 - Recon / monitor roof, floor spaces, cockloft
 - Post-flashover; structure involved
 - Expect collapse
 - Roof ventilation:
 - Conduct from aerial device

TRUSS CONSTRUCTION
Lightweight Wood Truss

MAY FAIL IN AS LITTLE AS 5 MINS.
 - 5 minutes of fire exposure, not 5 minutes after FD arrival
 - NO WARNING!!!
 - 2" x 4" wood members
 - Parallel Chord – floor and flat roof
 - Peaked – roof
 - Condos / Townhouses
 - Newer housing developments
 - Renovations

TRUSS CONSTRUCTION
Lightweight Wood Truss

Concerns: Connection methods:
 - Unprotected steel: Prone to failure
 - Sheet metal surface fastener
 - "Gusset plate" or "Gang Nail"
 - Penetrates only ¼ - ½" into the wood
 - Pulls free and curls up when exposed to heat
 - Rough handling at site or during transportation weakens prior to installation
 - May be insufficiently fastened
 - Moisture caused corrosion
 - Impact load failure
TRUSS CONSTRUCTION
Lightweight Wood Truss

- Concerns:
 - Minimal dimension of wood
 - 2' x 4' may be 1-1/2' x 3' or less
 - Failure to compartmentalize
 - Open attic
 - Sheetrock only reaches ceiling
 - Poke throughs
 - Open construction of truss
 - Each piece simultaneously exposed
 - Horizontal and vertical spread
 - All trusses in area exposed at once

TRUSS CONSTRUCTION
Composite Lightweight Truss

- Wood top and bottom chords
- Steel web members
 - Wood mortised out to fit stamped steel into top and bottom chord
 - Pin connector
 - Wood mass compromised at mortise
 - Steel conducts heat into mortise
 - Early failure as in other lightweight trusses

TRUSS CONSTRUCTION
Bowstring Truss

- Deadliest type of roof
- Humpback Roof Design
 - May be hidden by parapet
 - 4 bearing walls
- Open truss area collects heat from fire below
- Spaced as much as 20' on center
 - One truss failure = 40’ wide opening
 - Retreat perpendicular to trusses
TRUSS CONSTRUCTION

Bowstring Truss

- Truss ends supported by side walls
- Front and rear walls support sloping hip rafters extending from front and rear truss sections
- Collapse without warning
 - Roof collapse causes inward-outward collapse of end walls
 - Transfers roof load to sloping hip rafters in end walls

Strategic Considerations

- Early identification is the key to safe operations
- Recon of truss area critical
 - Use man-made openings
 - Operate from aerial device
 - No fire in truss
 - Reinforce marginal interior operation
 - Continue to monitor truss area
 - Fire involves truss
 - Withdraw personnel
 - Pursue defensive strategy

- Reports from Roof critical to strategic decision
- Beware of conflicting roof / interior reports
 - Interior reports minimal heat and smoke condition
 - Roof reports heavy fire
- WITHDRAW IMMEDIATELY!!!
Building Construction

Wooden I-Beams

- Used in floors and roof construction
- 2” x 4” top and bottom chord
- Plywood or chipboard web
 - Adhesive material adds to fire load
 - Provides some lateral fire-stopping
- 5 minute collapse potential
- No warning

Building Construction

Hybrid Construction

- Makes use of more than one construction type
 - Walls & partitions are unprotected metal stud (Class 2)
 - Floors supported by steel truss
 - Plywood floors
 - Roof is wood, usually truss (Class 5)
- Very little fire resistance
 - Prone to early & progressive collapse
 - Preplan is crucial

Building Construction

Hybrid Construction

- Can be created by renovations or alterations
 - Heavy timber may be renovated to include lightweight materials
 - Extensive use of new technology / building methods
 - Meets structural codes, but so do trusses (Any questions?)
Collapse Considerations

- Types of Wall Collapse
 - Wood frame:
 - 90° angle
 - Full height of wall
 - Inward-outward
 - Usually braced frame
 - No warning – MOST DEADLY
 - Lean-over
 - Corner buildings

- Masonry Wall Collapse
 - 90° angle
 - Wall separates at top
 - Inward-outward
 - Bowstring truss
 - Curtain fall
 - Veneer
 - Heavy Timber

- Types of Floor Collapse
 - Tent Floor
 - Pancake Collapse
 - V Shape
 - Lean To
 - Supported
 - Unsupported
Collapse Considerations

- **Collapse Safety**
 - Any collapse threat should cause an immediate reevaluation of the current strategy
 - Pre-established evacuation signal
 - Radio emergency transmission
 - Apparatus air horn / siren

- **Strong Command presence**
 - Command and control
 - Roll Calls
 - Establishment of Collapse Zones
 - Vertical = at least height of facing wall
 - Horizontal = Entire width of weakened wall
 - Consider secondary collapse
 - May cause expansion of zones

Summary

- **Heavy Timber Construction**
- **Wood Frame Construction**
 - Braced Frame
 - Balloon Frame
 - Platform Frame
 - Lightweight Truss
 - Wooden I-Beam
- **Bowstring Truss Construction**
Summary

- Hybrid Construction
- Collapse Zones
 - Vertical
 - Horizontal
- Masonry Wall Collapse
- Wood Frame Wall Collapse
- Wood Floor Collapse

Conclusion

- Be a student of building construction
- Preplan buildings
- Utilize an information recall system
 - Palest ink is better than the sharpest memory

Next Lesson

- Lesson 5: Engine Company Operations
- Reading Assignment:
 - Fireground Strategies
 - Ch. 2